轴承因使用环境的不同,所以被侵蚀的表现也是不同的,因为侵蚀方式不同。KOYO轴承当然也逃不掉这个被侵蚀的宿命,下面就来讲一讲轴直线承被侵蚀的三种方式。
1、气蚀
KOYO轴承的气蚀是固体表面与液体接触并作相对运动时所产生的表面损伤形式。当润滑油在油膜低压区时,油中会形成气泡,气泡运动到高压区后,在压力作用下气泡溃灭,在溃灭的瞬间产生极大的冲击力和高的温度,固体表面在这冲击力的反复作用下,材料发生疲劳脱落,使摩擦表面出现小凹坑,进而发展成海绵状伤痕。重载、高速,且载荷和速度变化较大的滑动轴承中,常发生气蚀;
2、流体侵蚀
直线轴承的流体侵蚀是指流体激烈地冲击固体表面会造成流体侵蚀,使固体表面上出现点状伤痕,这种损伤的表面较光滑;
3、电侵蚀
KOYO轴承的电侵蚀是指由于电机或电器漏电,在直线轴承摩擦表面间产生电火花,在摩擦表面上造成点状伤痕,其特征是损伤往复出现在较硬的轴颈表面上。
要想预测KOYO轴承的疲劳寿命,判断剩余寿命,就需了解所有的轴承疲劳破坏现象,为此将花费很长时间。然而,由于滚动疲劳是在接触点的压应力下发生的疲劳,要达到破损将发生极大的材料变化。因此,除了表面出现早期裂纹、滚道遭受化学影响、裂纹的扩展先于材料变化的情况外,检测材料变化就可能判断直线轴承的疲劳度。
直线轴承疲劳失效是一个失败的表面形式,主要表现为疲劳裂纹的萌生,扩展和断裂过程,在交替下所产生的负载故障的长期影响的金属。裂缝在两个方面:
第一:从表面上看,这是,直线轴承在滚动接触过程中,由于在工作表面的塑性变形和应变硬化表面的接触应力周期性变化所造成的外部载荷的作用,并终于在小裂纹从发展的内表面,在两者之间的表面裂缝的形成,由于工作表面的揳入润滑剂,开放的力量,严厉打击在墙上,迫使裂纹向前推进;
二:从面层,反复的压力下,表面的接触,最初在暴露表面的地方一定深度产生裂纹的裂缝,并沿表面方向的角度,到一定的深度,从在接触面的表面后,和超越表面,并最终形成蚀剥离,留下一个马坑。
从表面上看,还是从面层的裂缝,这两个目标(零件渗碳,淬火和其他表面热处理,后如果有硬度不均匀,组织,和非均匀的内应力和其他不利,则接触应力一般是从产生相反的地下裂缝的影响下,如果零件表面质量差,存在一个缺陷(氧化,脱碳),摩擦或润滑不良,从表面裂纹。